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Abstii. et 

This is Part I of a survey of recent developments in goal 

progcannttinrj and multiple objective optimisations. In this part, 

attention is directed to goal programming with emphasis on the 

authors' own work (with others) in a variety of applications. 

This includes goal and goal interval programming, as well as 

characterizations which make it possible to obtain alternate 

representations and explicit solutions from special structural 

properties. Possibilities tor various goal functionals are 

explored and delineated. One class of examples is developed in 

detail and an algorithm is supplied which utilizes sequences of 

ordinary linear programming problems to solve certain nonlinear 

and non-convex problems involving maxima of ratios of linear 

forms. 

■ 

J*,— 

 -  

« j _ .■. 

 _  - 



1.    IntrodiM tion 

One might  initiate a survey of developments in "goal programming" 

by enunciating something like a   "10-year rule".    E.g.,   some  10 years 

elapsed from the baby's birth,   circa  1952,  before the name  "goal 

programming" was affixed to it with the publication,  circa 1961-62, 

of Appendix B in  [ 9 ] .-'     This does not mean that everything remained 

fixed or unattended in the intervening period.    Nevertheless,   almost 

another 10 years elapsed before goal programming began to receive really 

widespread attention and use  in Management Science, Operations 

Research  and other professions and sciences.    See  [6] • 

Continuing this brief,  and very casual, history we may associate 

the  initial period with extensions of OR from military to 

civilian   (private enterprise)  uses.    This naturally necessitated the 

development of new tools as well as new concepts and points of view. 

The subsequent period,  1961-1971,  approximately, was mainly concerned 

with   (a)  exploiting these new tools with a variety of new uses that 

then invited attention-'  and  (b)   studying alternative formulations 

*'A synoptic view of some of these early developments as they relate 
to topic of   (inequality)  constrained regressions may be found in 
[ 8] .    See also [6] . 

■=/see,  e.g.,  Bruno   [2]# chisman  [19] ,  Rehnius and Wagner [351    and 
White,  Shapiro and Pratt  [45]    for an idea of the range of applications. 
Others,   including goal programming approaches to advertising media 
selection, manpower planning and organization design are discussed 
in   [ 8 1. 
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with special reference, perhaps, to their potential value in curve 

fitting (theory or methods), statistical inference, etc.-/ 

Of course, all of this work has continued with new applications and 

new results that have opened ways for further uses and results, and so 

on. Nevertheless, a substantial spurt of developments (and further 

uses) seems to be apparent from circa 1971-72 on. Doubtless some of 

this or, in some sense, perhaps all of it, is due to this earlier 

work. The main impetus for the burst of new applications seems to 

be associited, however, with the evolution of "public management 

science" and its very natural orientations toward multi-goal or multi- 

objective formulations and usea. 

In summary, then, we may say that we have one period of 

invention arising from applications to the then new civilian 

(private enterprise) section and another arising from the sub- 

sequent extensions to other spheres (e.g., governmental applications) 

which we may designate as the area of "public management science". 

In short, goal programming was designed as a "work horse" — strong 

and rugged and easy to use — rather than as a "thoroughbred" requiring 

devoted attention by skilled attendants and used only by specially 

trained riders, for their own or other's amusement or for, and 

finally, perhaps, permitted to breed, also under skilled guidance, 

to produce other thoroughbreds, mainly. Hopefully, the new 

■i'See e.g., the work by Wagner [43] and [44] , See also [6] for a 
discussion of relations to much earlier work. Churchill Eisenhart 
in C23] discusses this, too, in the context of the early development 
of least squares regression going back at least as far as the work 
of Roger Boscovich, the Jesuit astronomer, who, circa 1750, was 
seeking to obtain regression lines for astronomical observations. 



developments  nov/ emerging   (in putlic management science) will, 

at  least   for  a while,  help to improve  some of the work horse 

properties by pointing toward now uses  and what might therefore 

be rcruired,   e.g.,   in the way of  formulation or characterizations 

as well  as   improvements in computational efficacy and related 

computer codes,   etc. 

It  is perhaps a good sign,  even  if somewhat frustrating   (in 

our present assignment)   to observe  that the pace of recent appli- 

cations has  reached a point where  it  is now hopeless,  or nearly so, 

for us to   locate and identify each of them in their wide and 

proliferating variety.    In any event we will not try.     Instead we 

will take  an alternate course and attempt to delineate new develop- 

ments  in theory and methodology which appear to promise,  at  least 

to us,  still  further openings to still other new applications 

which might otherwise not be essayed.    Hence,   in a manner consistent 

with what has  already been said, we  shall also try to point up 

the presentation of these new developments with.reference to some 

of the applied contexts in which they originated.    This seems worth 

doing even if it does tend to restrict us to contexts — e.g., 

applications  in which we have been personally involved — so that 

we can thereby speak with some assurance. 

. .,„... 
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The approach that we are proposing to take has disadvantages. 

It will prevent us from examining important developments such as 

uses of goal programming,  etc.,   in multi-dimensional preference 

representation and analyses,  etc.. where we shall only be able to 

list a  few references,  and,  of course, we will not expect to achieve 

a well balanced presentation, much less a presentation in depth, 

for all such topics.-'    On the other hand, we may draw some comfort 

by arguing that we are at least trying to move upstream in the 
2/ 

sense of the  following quotation-'   from the writings of probably 

the greatest mathematician of the" present century and one to 

whom,   in any event,  all of OR must be in debt. 

See,  e.g.,   [21]   and   [38].    The same applies  for any attempt 
to study the  related uses in statistical estimation,  etc., 
for which,   q.v,    [8]   and the references  cited therein. 

-'See   [40] .    We are indebted to O.A. Davis for calling our attention to 
this quotation from his paper,   "Notes on Strategy and Methodology for 
a Scientific Political Science"  in J.  L.  Bernd,  ed.. Mathematical 
Applications  in Political Science   (Charlottesville:    The University 
of Virginia Press,   1969). 

——  
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"I  thinh that is a relatively good aporoximation 
to truth...that mathematical  ideas originate in 
empirics,   although the genealogy is  sometimes 
long and obscure.    Lut»  once they are so con- 
ceived,   the  subject begins  to live  a peculiar 
life oC its  own and is better compared to a 
creative one,  governed by almost entirely 
aesthetical motivations,   than to anything else 
and,   in particular,   to an empirical science. 
There   is,  however,  a  further point which,   I 
believe,   needs stressing.    As a mathematical 
discipline  travels  far from  its empirical source, 
or still more,   if it is a second and third genera- 
tion only indirectly  inspired by ideas coming 
from  "reality",   it is beset with very grave 
dangers.     It becomes more  and more purely 
acstheticizing,  more and more purely I1 art 
pour  i'art.    This need not be bad,   if the field 
is  surrounded by correlated subjects, which 
still h ive closer empirical connections,  or if 
the  discipline is under the  influence of men 
with  an exceptionally well developed taste. 
But there  is a grave danger that the subject 
will develop along th3 line of least resistance, 
that the  stream,  co far from its source, will 
separate  into a multitude of  insignificant 
branches,   and that the discipline will become 
a disorganized mass of details and complexities. 
In other words,  at a great distance from its 
empirical source, or after much "abstract" 
inbreeding,   a mathematical subject is  in danger 
of degeneration.    At the  inception the style is 
usually classical; when it shows signs of becoming 
baroque,  then the danger signal is up,,.    In any 
event, whenever this  stage  is reached,  the only 
remedy seems to me to be the rejuvenating return 
to the source:    the reinjection of more or less 
directly empirical ideas." 



Go^I Programininq cind Kultipie Criteria Optiroizations 

To allov/ for developments such as have already occurred,   and 

also to allow for  Cutnrc  possible courses  of cicveloprrent, 

we may now try to characterize goal programming — and related 

multiple criteria  optimizations^/—  in a manner like the following. 

In goal programming one evidently encounters certain desired con- 

ditions which are characterized as "'goals*  to be met  'as closely 

as possible"1.    These goals may be specific values or ranges of 

such values,  as  in the case of "goal interval programming",  and 

"as closely as possible" may refer to non-metric   (e.g., non 

Archimedean order)   as well as metric properties. 

In any event each such condition is assigned a functional 

which penalizes  for deviations from the desired goal.    These are 

therefore called  "goal functionals."    The vector of goal functionals 

is also submitted to an extrem iz at ion, which may be of vector of 

scalar type, and may involve combinations of the  individual goal 

functionals, which are to be  "mot as closely as possible". 

The example which has become typical in the literature involves 

a weighted sum of absolute values of the  individual goal deviations.^ 

These are then replaced by an ordinary linear programming equivalent, 

as in the earliest example [10], where the theory and interpretations 

was also set forth in both geometric and algebraic terms. 

—'"Multiple objectives"  is, we think,  a better name.    See Chapters  I and 
IX  in [ 9 ]. 

^It was noted explicitly in  [10]   that other types of non-linear 
goal functionals,  t.g.,  any vector norm,  could also be used. 



Reduction to a linear programming equivalent is convenient, 

of course, both for computation and interpretation.    But restric- 

tions to a weighted cum of absolute value functions is not the 

only such possibility.    The characterization we have just supplied 

allows  for different  functional forms  in a single model,-^    Also, 

the notions of extremeiity include poly-extremizations-'   and hence 

can include concepts  of cooperation and compromise such as 

«re  involved in n-person games wherein each goal   (or set of goals) 

is associated with a different player.    Any of the many possible 

concepts of solution for such games can thereby be accorded a 

goal programming  interpretation. 

At this point, we shall not    pursue all of the other possi- 

bilities that are  also admitted by the characterizations we have 

just supplied.    Instead, we shall turn to recent developments,- 

as promised,  and attempt to make our characterizations somewhat 

more concrete by reference to the applications that gave rise to 

them. 

1/ -'See,  e.g.,  [15]   . 

2/ See, e.g,  the application of such a poly-extremization to the 
design of a network of city streets in   [9] ,  Chapter XX. 
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2,  Goal Programming. Case I 

We might begin with the absolute value format, viz.. 

(1.1) min      S 
xeX    iel 

E    a. .x.   - g. 
j=l    ^ 3      yi 

8 

where X represents  a set from which the choices of vectors, x, 

must be effected.     The  a, .   and g.   are constants  and id refers 
ij    'i 

to the index set while the vertical strokes are taken to mean 

the absolute value for the expression which they enclose. 

We can regard the g. as "goals", since the functionals 

(1.2) fi(x) = Ti   4. .x. - g. 

have the properties prescribed for a goal programming formulation 

viz.,  the f. (x)   vjlues increase with discrepancies from g-  for 

each xeX choice. 

We can also replace the  formulation   (1.1) with 

min     Ti    (6.    +6.) 
in   1      1 

(2.1) s.t. 
n 

J.1 ^ ^ " ^i +  Si ^ bi 

6+,    6. >  0,   iel 

where, as in (1.1), the x. values are restricted via xeX. 

 —^——- 



A proof of the  equivalence between   (1.1)   and   (2,1)  would 

retrace developments  that originally gave rise  to the  ideas of 

"goal programming".    We will not provide such detailed proofs 

in this paper   (when they are  available elsewhere)  but a sketch 

like  the  following should suffice. 

Define 

(2.2) 

«t- 
n 
S     a . . x . "i 

n 
S a. .x.   - b, 
i=l 13  3 3 

6     = 
1 

]   n 
<C    a. .x. 

ii=l    lj  ^ 
-bi - (iv^ - *) 

Then adding and subtracting the parenthesized expressions to  (1.1) 

jnd collecting terms we obtain the functional form for   (2,1) along 

4.      — 
with non negativity for each of the 6.,   6.   pairs.    We c .n also 

simplify the constraining relations in  (2,2) by subtracting the second 

set from the first to obtain the thus simplified constraining relations 

n 
(2.3) 2ja..x.   -6.    +6.«b. 

j.! ÜJ x 1        1 

as  in   (2.1) without producing ambiguity provided we maintain 

6,6 ,   a 0 all  iei,   as  required  in   (2.2), 
1 1 

The  latter   (nonlinear)   conditions need not be maintained 

throughout a series  of iterations, however,  since only equivalence 

1/ + - at an optimum is wanted.-'     Moreover,  the condition  6^6^^ « 0 is 

Vfl ee  [7]    and   [29] . 

  



10 

necessary for optimality so th^t   .ny optimizing solution of 

(2.1)  produces all that is wanted for an x = x* which is  also 

optimal for   (1.1). 

We next observe that  any choice of xeX will also satisfy the 

constraints of   (2.1)   since each ßt,   §7 choice  is  independent of 

every other such pair.    In other words we may interpret each 

such   6.#   6" >  0 as  a measure of distance   (or discrepancy)  relative 

to the ith goal.    Thus,   the objective  in   (2.1),   and hence   (1.1) 

as well,   is to effect choices of the decision variables, x., 

which minimize the sum of these discrepancies. 

Evidently we may weight these discrepancies differently to 

obtain 

v-v +   + mm 
min      2J   w. 6.  + w. 6 . 

in   ^      i x 

s.t, 
(3.1) n 

yj a. .x. -  6. +  6.  = g. 

«J.    «J >   0 

+ where the w., w.   are non negative constants  representing the 

relative weight to be assigned to positive  and negative deviations 

for each relevant goal g.,   iei. 

Instead of such relative weights we can also use  "preemptive 

weights"  — or,   more generally, we may use both as  in. 

,.    . BlBMnHMi 
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rain S    M.    £     (w+(k)6+(k)   +w'(k)6-(k)] 
iei     ■" k=l    X1 * 1 ' 

s.t. 

(3.2) Sa..(k)x. -6+(k)   +   6"(k)   = g. (k) 

6+(k), 6'(k) >   0 

j.l ii        3 i i 'i 

th 

where w. (k), w. (k)>   0 represent the relative weights to be 

assigned to each of the k=l,,..,n^ different classes within the i 

category to which the non-Archimedean transcendental value M.   is 

assigned.    These constants M.   are defined to produce the desired 

preemptive properties.    These  "preemptions" are  interpreted to 

mean that no substitutions across categories can be admitted-1; 

and this  is accomplished by writing 

(4.1) M. »   M. . 
1 XxS 

to mean that no real number #,  however large«  can produce 

(4.2) , aM.      > M.     . i+s  ""     i 

Thus, a_ fortiori, no combination of relative weights and 6 . (k) or 

6~(k) values in (3.2) can produce a substitution across categories 

in the process of choosing a minimizing x«X. 

See e.g., Jaaskeleinen [30] for application to financial planning. 
See [12] and [13] for applications to budgeting in public health 
and drug control programs. 
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Moving from relative to preemptive priorities via such 

weighting systems does not end the possibilities.    We may also 

continue to so-called absolute priorities  introduced via the 

constraints.     For instance, we may require that   6"   < 6* when 

we want to assure that deviations below the i      goal will never 

exceed those for the rth goal.    Furthermore we can ensure this 

fe!h 
absolutely, via the indicated constraint, even if the r  goal 

is assigned a preemptive value in the functional -- provided we 

do not violate the condition  6.6? = 0 for any iel. 

We shall not explore these possibilities in depth, as already 

indicated, but we shall briefly delineate other possibilities and 

other problems from time to time as in the case, e.g., of goal 

interval programming, which is developed in the next section. 
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3,    Goal  Interval Programs 

Figure  1 will provide a  start for moving from  "goal"  to 

"goal-interval prograraniing".    The graph for the  "goal programming 

functional",   in the single variable x,   reaches  its minimum when x 

while for the  "goal interval functional" the same minimum value 

obtains  for all g^ < x < g?»    However»  the slopes of the two 

different functions,  given by k    and kg,  are the same as those 

for the corresponding goal program,  in this case,   for which also 

k2-o. 

• 9 



GRAPHS FOR GOAL PROGRAMMING 
AND GOAL INTERVAL FUNCTIONS 

14 
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Figure I 
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Figure 2,  which arose in an application of goal interval 

programming to the Marine Environmental Protection program of 

the U, S. Coast Guard provides a concrete application of what may 

be wanted. Here the variable x refers to the percent of transfer 

operations (i.e., the transfer of oil from tank, barge or vessel 

to shore facility or vice versa) which are to be monitored. The 

broken line (here drawn freely) is intended to represent the 

relation between spill incidence (total spill volume divided by 

total volume transferred) and the percentage of transfer operations 

monitored. The solid (polygonal) curve represents the goal 

functional — partly reflecting degree of confidence in the 

assumed (broken line) relationship in various regions and partly 

reflecting the subjective judgments and preferences of MEP (Marine 

Environmental Protection) program management. 

■    ■  ■  , ■    :       . ■ 



APPROXIMATION TO EFFECTIVENESS CURVE 
FOR TRANSFER OPERATIONS MONITORED 

IS 

x ■■ 7. Transfer Operations Monitored 

£(x) - Measure of Ineffectiveness, i.e., Spill Incidence 

Source [11]. 

Figure 2 
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We may observe that the goal  interval, which extends from 

x = 20% to x = 40% in Figure 2 need not be at f(x)  «0 — as was 

the case in Figure I«    Moreover,  this interval and the value 

assigned for the goal functional may be balanced,  along with the 

"slope preferences", by reference to other competing programs, 

and so on. 

To deal with these and similar problems  in a way which 

maintains contact with the preceding developments in goal pro- 

gramming, we articulate the following: .y 

Theorem 1:    Any polygonal  (i.e.,  piecewise 
linear and continuous)  function, 
f (x), may be represented 

N 
f (x)  =   Z)  a. | x-g.l   +  ßx + v 

j=l 3 3 

where 
k.     -k. 

«,      ~  

kN+l't' xi 

y From   [11] 
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and 
N 

Y = a 
1  j=l D 3 

r-1     N 
= a + Sag- T/a a • 

r  j»l 3 J  jar 3 j 

aM + ^ a.g. - ^ g 

^N+l + al , 
2 

in which 

f (x) = k x + a r r    r g,..! < x < gr( 

so that k is the slope and a the intercept constant for the 

corresponding linear function in the indicated section of the 

curve initiated at x = g,,, where k ,x + a,. , intersects k^x + a,., r-i       r-i    r-i r    r 

and terminated at x = g where the latter intersects ^r+1x + a +1« 

Turning to Figure 3 we see a situation such as might be 

encountered for any f.(x.). Here the slopes are indicated by 

the constants k^, j=l,.,.,N+l, with the goal interval for this 

fi^xi^ iocated somewhere between the abscissa at g^ and gjM.i« 



GRAPH FOR GOAL INTERVAL FUNCTIONAL 
WITH VARYING SLOPES 
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w 

8i,N-l 

Figure 3 
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Since the constnnts V. do not enter into the optimizing 

choices we can simplify matters by omitting them from explicit 

consideration. Therefore, we define 

(5) yi  = fi(xi) - Yi 

and write our general goal interval programming formulation as 

n\ m        n. _ . 
min z =   Ti v.y.   m   ^W,^CKJ^(6J_.  + 5_)  +ß ^x^ 

i=l 1^       i=l lj-l tj     ij tj 

(6) with    g. , " 6i-i  "  6^ + xi»  a11 i*   3* ij *J 13 * 

ith Here g    ,  a constant,  is assigned to the j"1 intervalized goal 

segment,   ]=l,.,.,n.,   for y.. controlled by the decision variable 
13 

o'   Jij 
x^.    The values for 6 . ,,  6. . >  0 represent deviations from g^ 

with,  of course,   6..C    =0,  as before.    The choices,  also as 

before,  are to be effected from a set X, defined by additional 

linear inequality constraining relations which we do not  (for the 

moment) write explicitly. 

The point to be emphasized is that the theory used in 

the preceding section to provide access to an ordinary linear 

programming problem is also applicable here.    This means that the 

computational power of linear programming is also available along 

with the very sharp duality relations and the rich array ot 

interpretative possibilities that such access brings with it. 

Now we might observe that the weights w. >  0 provide relative 

priorities between the goal functionals,   fjjita) •    Here, however. 



Uie  slope differences given by 

(7) a 

21 

k. ..,  - k. . 
ij ■.   "      ^ 

must also be considered.    Evidently the differences between these 

slopes may alter the  relative priorities between the corresponding 

goal  functionals  in various ranges so that   (as  in the Coast 

Guard's MEP program)   these possibilities must also be considered 

when choosing these w.  values. 

The goal  interval functional in Figure 3  is convex,  but this 

need not l? the case.    The  functionals represented in Theorem 1, 

however,  are not necessarily suitable for use as goal functionals 

unless they satisfy the conditions set forth in the following. 

Theorem 2:    A necessary and sufficient condition 
for f(x)  to be a goal functional is 

&1« 1 >U1    , 
3-1   D 

since then the choice of the variable x will not be oriented 

away  from the goals by the values assumed by &x in the indicated 

extremizations.     In concluding this section in a manner consistent 

with the preceding one, we might therefore say that here the   ot 

and ß values are interpreted to include the weights as well as the 

slope coefficients for the functionals which are represented by 

the corresponding linear segments. 

^See Ufi  . 
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4.    Alternate and Coirbined Representations 

Discovering that functions of the above varieties could be 

dealt with by the adjacent extreme point methods of linear 

prograruning very naturally awakened interest in exploring the 

"nonlinear power" of these methods.        That is»  this interest was 

directed to ascertaining the extent to which these methods, 

devised for solving ordinary linear programming problems, could 

be used to deal with nonlinear problems as well.    Precise delinea- 

tions were wanted as to the character of such problems and the 

alterations,  if any,   that might be needed in the ordinary algorithms 

such as, e.g.,  the simplex method. 

We are here concerned only with functions,   f(x), which are 

suited to goal  (and goal interval) programming.    Since these 

functions will generally be convex, we may represent them as 

N+l 
(7) f(x)  =  Zk.x. + d 

j=l 3 :, 

where, as before, k    is the slope of the r      line segment 

corresponding to k x + a ,   and 

r 
(8,1) x =   T x 

for 

(8.2 

D=l3 

Xl-^ 

0 ^ Xj < g    - g^,  j>2,....N 

0   -«H+l 

i/see Chapter .C in   [9l .    See also  [341 
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with 

(8.3) x = x    + g    .. 
r       Jr-1 

when g    , ;': x < g  .    That is, we utilize the convexity property 

to obtain the order of entry, under miniinissation-'v which produces 

r-1 
(8.4) x = g   + XI   (g-i-g. J + x 

1       j=2        J     J"-1 r 

= g       + x 
r-1 r 

for any r=2,...,N. For x < g. we have, x=x,   and, similarly, 

at the other end x -■- gN + X«.. . 

We now want to compare this with the absolute value function 

N 
(9) fa (x) = Z% 1 x-g I +|8x + I' 

3: 

which, as we saw, via Theorem 1 of the preceding section, provides 

an alternate representation that can be used for this same (piece- 

wise linear) function. 

We want now to develop formulas that will enable us to move 

from (7) to (9), and vice versa, whenever this might suit cur needs. 

Once again, however, we have recently published work (or work which 

is soon to be published 0-43 ) to call on and hence we may content 

ourselves with a sketch as follows. For 

-'The pertinent theorem, if wanted, may be found in the Appendix 
to [16]. 



and 

N 
fa(x)  =   loi.\ x-gj  +    x + ^ 

j-1 

n 
Z^jtej-^) +^x1 

+3' 
3=1 

n n 

24 

f   (x)  = k x    + d. 

Over the entire interval x < g equality holds between these 

expressions for fa(x) and fs(x). Hence we may appeal to the 

property of analyticity and obtain 

n 

11        j=l  3 

N 
d ■ Z"c^.g. + / . 

j-1 j  3 

Using Theorem 1 of the preceding section we find that d « a the 

intercept value for the first linear segment, viz«, koc + a , 

which applies for x l£ g , 

Continuing our sketch we proceed to g , 2: x < gr and obtain 

r-1 

fs(x) = krxr + kigi + ^ VV^-l* + al 

as well as 

.- zatmam 
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H 
(x) =  "  ' ".(x-g.)  -   £c<.(x-g.) +f?x + 

3=1    D J ja:r    D        3       r 
r 

/r-l n s /-r-l n N 

T< -  ZeX . +ßjxr J f.^ -  VcC   + (3jg 

n r-l N 

(j(:rD
g3     jsl3

g3    ^ 

Thus,  reasoning as before, we have 

r=l N 

r      Pi   j      j-r    ^     ^ 

Similarly 

r+1 

M 

j=l j=r+l 
? 

and therefore 

(10.2) kr+1 " \ " 2°^»     r=2,...,N, 

as we saw in the preceding section. 

Given knowledge of the^'.,  g-, (9 and ^ we are evidently in 

a position to determine the k.  and d = a^ values for  (7).    Conversely, 

given the latter values we are evidently in a position to determine 

the ex., Q and  lvalues for  (9) via 
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] 2 

N k      +k. 

(10.3) l" 1       r^ j 2 

N N   Ak      -k.   \ 
g. 
j 

We now have a way of relating the developments in this and 

the  immediately preceding section.    In particular, we can move 

between the representations for fS(x)  and fa(x)  as given in  (7) 

and   (9)   at our pleasure.    Evidently we can immediately 

extend all parts of this analysis to functions which are sums of 

functions  f.(x.)   and f.(x.) with  further segmentation and weighting, 
111! - 

as was done in the preceding section, to relate them to slopes and 

goals g- .,   jal,••*«n.  for each such itI, 13 i 

Before proceeding to the next section, however,   it may be use- 

ful to relate what has now been accomplished to the earlier 

discussion of goal programming in Section 2 as well.    For this 

we recall the definition of "separability"-'— viz.,  P(y1#...#yn) 

is separable if 

•i/see pp.  351 ff.  in L^H   for a discussion of the use of this 
property in securing approximations to a variety of nonlinear 
functions. 
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In other words it can be represented as a sum of functions each 

involving only one variable in its argument.    Then we extend this 

to "weak separability" which comprehends cases in which FCy , ...ty ) 
1    n 

may be brought into separable form by suitable linear transformations. 

That is, via transformations of the form 

xi - h^r Itl 

we can represent F(y, »...#y ) via the expressions 
1 n 

Z f.(x.) 
itl 1    1 

when F(y,»....y )   is weakly separable. 
J- n 

As a case in point consider the expression   (1.1)   in Section 2 

which we represent 

p(y1»....yn) 
o Si?  a    y-gl 

This may be replaced by 

(U) 

2   f.(x ) =   ^   t  x.-g. 
Lfl    1    1        i/I >     1    xl 

with 

1     3-1 
S a^y.'    ia 

ID   D 
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so that we can  in this way bring the  functionals of Section 2 

into the same  form as those which we have been examining in this 

and the  immediately preceding section.    We may therefore hereafter 

assume that the linear transformations needed to do this,   as in 

(11),  are comprehended by the set X defined by the restrictions 

for the admissible choices of vectors,  x. 
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5,    Explicit Solutions 

We may again utilize relatively recent results   (see   [14] ) 

to obtain certain simplifications and improved solution precedures. 

Indeed,   for certain classes of problems    we can write the solutions 

explicitly via a development which proceeds as follows.    First, 

we formulate the  functions to be considered as f(x)  =   Sf. (x.) 
i        1 

in the problem 

min f (x) =    S f, (x.) 
.     i    i 

with 

b. > x. > a , 
i -    i -    i 

where the f (x ) are goal functionals, and so are monotone de- 
i    i 

creasing for x. <   g    arid monotone increasing for x.   > g..    Such 
1        i i        i 

functions need not be convex,  although we shall restrict ©;>» examples 

to this class in the discussion that follows.        Similarly the 

results we  shall obtain also extend to a wider class of constraints 

than those given in  (12)  as we shall also show. 

To proceed with our development we first state** 

■i/cf.  [14]    for a discussion of the Tcinds of functions comprehended 
and ways in which they might be utilized. 

^From   [14], 
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Theorem 3:     If x satisfies the constraints 
in  (12) with some of its components 
x.   >   g.    then x with components 

o        1o 

X.    ■»•f 

jnax  (ai   ,  g.   ),  i»ic 

also satisfies the constraints in  (12) 
with 

f(x)  < f(x). 

In other words,  this theorem asserts that we do not worsen the 

value of the functional and we continue to satisfy the constraints 

when we  replace x by x. 

The proof of the above theorem is relatively straightforward 

and so we do not reproduce it here»-'     Instead we illustrate 

its use  in the case where each 

(13.1) W  3 ^i1  Vi1 

and these ^. > 0 represent weighted a.  as in (5) and (6). Further- 

more, we assume without loss of generality that these constants 

are indexed so that ^^o - ••• - ^i- •••- ^n»  say» By 

i/. See [14] . 
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virtue of Theorem 3 and the minimizing objective we can modify 

the interval constraints via 

(13.2) x.<   max   (ai*gi) s   ^^ 

Also if g. < a. for any i then we set xi « a. and reduce the 

problem by omitting these variables. We thus attain the following 

problem 

min      X5|Aii Xi-gi 1 

with 

(14) £o >£ x. 

b.   > x.   > a. 
ill 

in place of   (12). 

The modifications noted in  (13.2)   ff. are assumed to be 

incorporated in   (14).    Because of these modifications, however* 

we now have x.   < g.,  all 1,  and this  implies 

1 x-g.j   = g.-x.. 

Hence we can replace this already reduced non-linear problem 

(14) with an ordinary interval linear programming problem, viz.. 

■    ■-■.    ■    ■.■;... 
■ 
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(15) 

with 

b0>    Sx, 
I 

b. > x. >  a. 
a. -    i        i 

without any additional constraints. 

If we assume that  S a. < b ,   as required for consistency, 

then we may immediately write the optimum solution to  (15.1)   as 

(16.1) 
* 

xi •=bi' i=l,... .,k-l 

* =   b        ~ 
O 

k-1 A 
t   b.   • 

i=l    1 

n 

where X is the smallest positive integer such that 

H-l  Ä n 
S 2    -     S     a^   S   b. 

0      i=Tc+l    X      i-1    1 

(16.2) and 

n 
b    -      2J      a.   <   -    _ 

0       i=k+l i-1 
s f,   . 

A proof that this  is the optimizing solution is obtained by 

considerations of duality and recourse to the "regrouping principle, 

as explained in   [14] •    Here we need only make it plausible by 

.1/ 

•=/see   [16]   for a discussion of this principle. 
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observing that  the ordering is  ^,  > P-_>...> ^    >  0.    Hence 

one starts with the consistency condition rT   -    T) a    > 0 and 

replaces a   with b ,   the upper limit for x^,   if possible.    This 

process is continued until the second condition in  (16.2)   is 

encountered.    This first encounter determines the integer k with 

the optimizing solution  (16.1) then resulting.    Hence,  starting 

with  (12)  and applying Theorem 3,  as has just been indicated, 

we are able to write the solution explicitly,  as in  (16.1)   and 

(16.2)  along with the values x.  ■ a.  obtained in the manner shown 

immediately after   (13.2) 

Of course,  no great practical interest per se attaches to 

problems such as   (12) where all save one constraint is in an 

interval form which bounds the variables,  one at a time.    Extensions 

are possible,  however.    For instance.  Theorem 3 evidently applies 

when the conotraints which involve more than one variable at a 

time have only non-negative coefficients. 

Other extensions whi-:h are also possible are treated in 

detail in t14l  .    We therefore conclude this section only with a 

specific   (but truncated) problem encountered in the development 

of goal programming models for use by the U. S. Navy's Office of 

Civilian Manpower Management.-^   We write this example problem as 

i/. See (171  ,   p.   11-18. 
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min    f(x,y) -   1 x^OJ +   1 x2-200 1   +^-70 U    1 y2-300 1 

(17.1) 

with 

2 

3,000     > I5x1 + 13x2 

00 > 

00 > 

4,000     > 

yi 

ISy, 

'2 

+ I3y2 

> o 

> o 

>  44 

>143 

where the subscripts refer to two different types of manpower which 

are further distinguished by x and y according to the period 

being considered. 

By virtue of Theorem 3, 

\ x^gj - g^x.,  Uj-gjl  - 9^ 

and ^ < max   (a.^),  y. < max  (a^g.)   for i,   j-1,2.    Hence we 

may replace   (17.1) by 

(17.2) 

max 

with 

30   >     x 

200    > 

x, +   x2+   y1+   y2 

x. 

3,000 ^.ISx.H-  13x2 

70 > 

300 > 

4,000 > 

> 0 

> 0 

> 44 

y2>143 

isy^ I3y2 



35 

which is an ordinary linear prograiraning problem. 

In fact we may split   (17.2)   into two smaller linear programming 

problems — viz.» 

(18.1) 

and 

(18.2) 

max x.+ X2 

with 

30 > xl > o 

200 > x2 > 0 

3,000 >15x    + 13x2 

max yi + y2 

with 

70 > yi 
>    44 

300 > y2 > 143 

4,000 > I5y1 + I3y2 

The explicit solutions of these problems — and hence of  (17.1) 

are  immediately at hand as 

x* = 400/15       ,  X2 = 200 

y* = 44 
*      4,000-660  .   ._, 

'  y2 = ""IS 257* 

—— — '' • "-"ItMWMlWIir 
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Alternatively we may put these problems in the form of (12) and 

thereby provide access to (16.1) and (16.2) by inserting 

A A 

x    =  15x1#     x2 ■ 13x2 

yl = 15yr    y2 - 13y2 

in   (18.1)   and   (18,2),   respectively. 

In either case we have obtained the illustration which was 

wanted to show how Theorem 3 may be used to obtain an explicit 

solution for the goal programming problem  (17.1),    As observed 

earlier,   a specific delineation of other extensions and how they 

can be effected is given in   [14]   and will not be developed here. 
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6,     Ratio Forms 

We now turn to other metrics and other functionals for the 

alternatives they can provide.    For instance,  JHS Kornbluth in 

[32]    considers the problem 

T m    !   c.x + a. 
(19.1) min      S   I   ■— --p. 

1=1 j    dpi + $± 

where a.,   ß.  and  P    are scalars and the superscript T represents 
i      i i 

transposition on the column vectors c.   and d. .    The set 

(19.2) X "■ 1   X:  Ax=b'  x ^ 0i 

which defines the  admissible choices is  assumed to be non-empty 

with A an mxn matrix and x and b as    column vectors which are nxl 

and mxl,   respectively. 

As Kornbluth  indicates,  utilizing the devexopments of Section 3, 

above,  produces a set of nonlinear constraining relations which may 

require recourse to special algorithms and specially arranged 

computer codes.■='     But other possibilities  and other metrics are 

available and they should not be overlooked when they might offer 

clear advantages.     The Chebychev metric  is one  such metric which, 

as we shall see,   provides  access to a series of ordinary linear 

■i/This may be mitigated — also as Kornbluth notes — when the 
fractional functionals  in   (19.1) have special features or when 
they are accorded special properties such as those associated 
with non-Archimedean order, etc. i 
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programming problems with related algorithmic advantages,   including 

ready access to available computer codes.    In addition to the 

algorithms that we shall provide via this metric,   it also seems 

to hive a certain natural appeal for problems of eouity  (or equality) 

as  observed by Vogt  in his development of an "Equal Employment 

Opportunity Index"   for use by corporate management or as observed 

by Charnes, Cox and Lane  in their development of a model tl8]   for 

allocating state  funds to educational institutions. 

To bring the problem  (using the Chebychev,  or C, metric) 

into the form in which we want to deal with it, we replace  (19.1) 

with 

(20) min   A 

lth y . 
T 

j 

21   0 , i=l,,..,m. 

where the minimizing value of S\,  a scalar,   is determined by the 

choices of x in accordance with  (19.2).    Assuming, with Kornbluth, 

that djX + 8 . > 0 for all admissible value of x we may evidently 

write the  i=l,.,. ,ni goal constra-.nts as 

(21) Md^x + W ~    I CIX + ^i " ^i  (diX +P ^ 1   ' 

The resulting model is nonlinear and nonconvex but, as we 

shall show,  it can be submitted to a linear programming development 

which provides a new and simpler alternative to those that have 

i'See Appendix A  in   [9] . 
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heretofore been available. First, however, we show how bounding 

conditions can be used to obtain other simplifications and 

reductions. For, in many (if not most) applications one will 

have among the set [x:Ax=b, x > (0 lower and upper bound constraints 

for the denominator in (20) ~ viz., 

(22.1) 1^1 d? x t^.l U.. 

(In fact, in the manpower planning problems noted at the close 

of our last section, the range for the difference between the 

constants, u. - L., is characteristically fairly small for a 

particular job, or site.) In any case, replacing d. x + ß. on the left 

side of (21) by Li and IT^, respectively, clearly results in a 

linear programming problem-^ with optimal values satisfying 

(22.2) X^X*^>^ 

where /* is the global optimum of the original   (exact)  non-convex 

problem and ^*, X* are the optima associated with the replacements 
L  U 

for L. and U., respectively. 

We can do better than this, however. We can, in fact, generate 

a sequence of improving approximations which converge to the optimum» 

To do this we look at the problem from another point of view. 

Suppose, for instance, that one wishes to be no more than a 

-^The remaining absolute value terms in the constraints can be 
replaced by pairs of linear inequalities as described on p. 460 
ofC9l . 



predetermined value, X,  away from the indicated goals.    One 

could then set up the problem. 
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max   fi. 

with 

(23) fi < I (d^ x + ßi) - Cl X + «I pi (dijt + ßi) 

for lx: Ax«b, x > 0 } as in (20) but ^ otherwise unrestricted. 

Associating solutions x with (23) and X,x with (20), and using an asterisk 

to denote optimal values, we would then have the following possibilities. 

( i) M- < 0; X, x is not feasible for (20) 

( ii) |J. =0; X = X  and x  is optimal for (20) 

(ill) H* > 0; X, x* is feasible for (20) with 

1c It      —* — «p 
X   <   X    (x ) < X, an improvement over X 

it   _* 
where X (x ) => max 

1 

I T-* . ^ c.x + «, 

d^x* + 01 

and X  is optimal for (20) 

In case (i) X is too small to be attained. The predetermined 

value must be recast higher and the new linear program solved. 

In case (ii), we are done. 

— it    j# 
In case (ill), we replace X by X (x ) and proceed as before. 

Continuing in this manner we set up a simple sequence of linear pro- 

gramming problems which converges to a solution of the nonconvex pro- 

gramming problem (20).        Q.E.D. 
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7.  Conclusion 

The completion of this survey will extend the discussion to 

other types of multiple objective optimizations. This vill bring 

to the fore ideas like "functional efficiency" and "solution 

concepts to n-person non-zero sum games" which are necessarily 

more recondite than the topics covered here. It therefore seems 

best to treat them separately and in more detail — with proofs 

supplied, as required — in the paper that will form Part II of 

this survey. 

In the present paper, i.e.. Part I, we have tried to provide 

immediately useful (and easily used) results in ways which are 

consistent with the objectives set forth in the opening section of 

the present paper. The references that are herewith appended are 

intended to flush this out, wherever further detail is required, 

either to extend the present state of the afrt in research or to 

bring the ideas of goal programming to bear on problems of appli- 

cation which are within the states described in these references. 

■" ."u.  "■'" ':— 
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